TU Berlin

Electrical Energy Storage TechnologyChair

Page Content

to Navigation

Prof. Dr.-Ing. Julia Kowal

Julia Kowal

Room: EMH 163


Einsteinufer 11

Sec. EMH 2

10587 Berlin

Phone: +49 (0)30 314-25394

Fax:     +49 (0)30 314-21133


Consultation hours: On Mondays 9 - 10 h and on appointment. In summer semester 2022 (25.4.-18.7.), the consultation hour will be from 10-11 h.

In most weeks, I am in the office on mondays, so a personal meeting is possible again. To be sure, please ask before you come. Alternatively, you can phone me or we can arrange a Zoom meeting.


since 03/2014
Chair of Electrical Energy Storage Technology at the TU Berlin
01/10 - 02/14
Senior engineer at the department of Electrochemical Energy Conversion and Storage Systems, ISEA, RWTH Aachen
PhD at RWTH Aachen, Topic: "Spatially-resolved impedance of nonlinear inhomogeneous devices - using the example of the lead-acid battery"
Visiting researcher at the company Exide in Azuqueca de Hénares, Spain
Visiting Researcher at the research centre RISØ in Roskilde, Denmark
Research assistant at the department of Electrochemical Energy Storage Conversion and Systems at the Institute For Power Electronics and Electrical Drives (ISEA), RWTH Aachen
Studies of electrical engineering at RWTH Aachen Diploma thesis: "Investigation of the thermal behaviour of electrochemical energy storage systems in vehicle on-board power supplies"



Awards and Scholarships
Herbert-Kind-Price of ETG in the VDE
Brigitte-Berkenhoff-Price for the best graduate in the field of electrical engineering at RWTH Aachen
Aachen's VDE price
Sponsorship through the Prof. Dr. Koepchen Merit Foundation (RWE)


The Influence of Cell Size on Dynamic Charge Acceptance Tests in Laboratory Lead-Acid Cells
Citation key https://doi.org/10.1002/ente.202101053
Author Bauknecht, Sophia and Kowal, Julia and Bozkaya, Begüm and Settelein, Jochen and Karden, Eckhard
Pages 2101053
Year 2022
DOI https://doi.org/10.1002/ente.202101053
Journal Energy Technology
Volume n/a
Number n/a
Abstract This study subjected laboratory-scale test cells to testing methods for dynamic charge acceptance (DCA) that have recently been developed and published for 12 V automotive batteries, particularly enhanced flooded batteries (EFB). The main focus of the study lies on the scaling and geometry effects of different test cell compositions as well as the comparability between the DCA testing methods. The test cells for this study are extracted from industrially manufactured automotive batteries; each cell had either a full set of plates, or a reduced, negative-limited set of plates. DCA measurements are performed according to SBA S0101:2014, EN 50 342-6:2015, and a run-in DCA drive cycle test. The results indicate that DCA generally increases as plate count falls. The correlation between short DCA tests and run-in DCA under realistic operating conditions is as weak for individual cells as it is known to be for entire batteries. However, DCA stabilized somewhat more quickly in test cells than in batteries.
Link to publication Download Bibtex entry


Quick Access

Schnellnavigation zur Seite über Nummerneingabe